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• Website: chemcatbio.org
- Tools and capabilities 
- Publications
- Webinars
- Interactive technology briefs

• Tools:
- Catalyst Property Database
- CatCost

• Newsletter: The Accelerator
- Subscribe
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Resources

https://chemcatbio.org/
https://cpd.chemcatbio.org/
https://catcost.chemcatbio.org/
https://www.chemcatbio.org/news-archive.html
https://public.govdelivery.com/accounts/USEERE/signup/21906
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Housekeeping

NOTICE: This webinar, including all audio and images of participants and presentation materials, may be recorded, saved, 
edited, distributed, used internally, posted on DOE’s website, or otherwise made publicly available. If you continue to 
access this webinar and provide such audio or image content, you consent to such use by or on behalf of DOE and the 
Government for Government purposes and acknowledge that you will not inspect or approve, or be compensated for, 
such use.

• Attendees will be in listen-only mode
• Audio connection options:

– Computer audio
– Dial in through your phone (best 

connection)
• Automated closed captions are 

available

• Use the Q&A panel to ask questions
• Technical difficulties? Contact Lady Miah 

Kane through the chat section, lower right of 
your screen

• Recording will be available at: 
https://www.chemcatbio.org/webinars.html 
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Fossil fuels provide 80% of 
American energy and is 

responsible for 12.3 million 
American jobs – U.S. DOE[1]

[1] https://www.energy.gov/articles/economic-impact-oil-and-gas

Agriculture, food, and related 
industries contributed roughly 
$1.537 trillion to U.S. gross 
domestic product (GDP) in 

2023 – USDA[2]

[2] https://z.umn.edu/a431



The Big Opportunity for Catalysis & Energy

Artificial 
Intelligence

Quantum 
Computing

Programmable Catalysis
(This Webinar)

What “disruptive technologies” will change our future?  (My opinion)



The Limits of Structure-Function in Catalysis

9ChemCatChem 2011, 3, 1159 – 1165.
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Ammonia 
Synthesis

Oxygen 
Evolution

Almost all of the 
key reactions of 

interest to energy 
are limited by the 
Sabatier Principle

Advanced Materials
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Conventional Strategy 1: 
Put in energy to raise Gibbs 

Free Energy of A (e.g., 
higher temperature)

Reactant A Product B

Catalytically Convert Reactant A to Product B
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New Strategy 2: Put in 
energy to drive reactants to 

products via the surface
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How do we design these 
catalytic pumps?

New Catalyst Function:  Dynamic Free Energy



Oscillating Catalytic Ratchet
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The ratchet mechanism preferentially moves molecules in one direction

[1] M.A. Ardagh, et al. Cat. Sci. Tech. 2019, 9, 5058.  DOI: 10.1039/C9CY01543D

Book:  “Life’s Ratchet”, 
by Professor Peter 
Hoffmann

Positive Scaling
γ > 1

Negative Scaling
γ < 0



Static versus Programmable Catalysis

Static Catalysis
Molecules fall down the free energy gradient

Programmable Catalysis
Molecules are promoted by a local free 

energy gradient



Isopotential Electron Titration (IET) – NH3 on Ru
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Isopotential Electron Titration (IET) – NH3 on Ru
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δ = 0.064 ± 0.005  e- / NH3*

Adsorption of NH3 adds 6.4% of an electron to the Ru surface



Isopotential Electron Titration (IET) – NH3 on Ru
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Isopotential Electron Titration (IET) – H2 on Pt
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Isopotential Electron Titration – H2 on Pt
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Consider a single material that changes in 
electronic state with time

Perturbation between catalyst states 
changes both:
• Binding energies of surface species
• Transition state energy

Changing of energies is predicted by linear 
scaling relationships

Intermediate, Slope:  γ
Intermediate, Offset:  δ
Transition state, Slope:  α
Transition state, Offset: β

18

State 2

State 3

State 1

Ea

Ea

Ea

Materials, Catalyst States, & Transition States



Catalytic Condenser:  A Platform Device
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Catalytic Condenser:  Structure - Function - Perturbation
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Expanded Catalysis Ideology: Find the right structure and perturb it 
effectively for the best performance…

Si

HfO2

Graphene

am-Al2O3

VCAT > 0
More Acidic

Vacuum

70 nm

– – –

+ + +

Propene + H2O
Acetone
Diisopropyl Ether
Isopropanol

Device:  Catalytic Condenser

Two conducting layers on either side 
of an electrical insulator (HfO2)

Top conducting layer (alumina & 
graphene) is thin

Charge in the top layer alters the 
electronic properties of the catalyst

[1] JACS Au, 2022, DOI: 10.1021/jacsau.2c00114



Catalytic Condenser:  Design
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A thin layer of graphene conducts charge to the alumina active sites

[1] JACS Au, 2022, DOI: 10.1021/jacsau.2c00114



Catalytic Condenser:  Isopropanol Dehydration
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Reaction:  Isopropanol  ←→  Propene + H2O
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Charge Accumulation in the Catalyst
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Catalytic Condenser:  Isopropanol Dehydration
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Adding holes to alumina promotes isopropanol 
dehydration at lower temperatures
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[1] JACS Au, 2022, DOI: 10.1021/jacsau.2c00114



Catalytic Condenser:  Isopropanol Dehydration (DFT)
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[1] JACS Au, 2022, DOI: 10.1021/jacsau.2c00114



Catalytic Condenser:  Isopropanol Dehydration
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Charge condensation acts like “electronic alchemy”
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What can be varied on condensers?

27www.cpec.umn.edu

Dielectric Film
• Dielectric constant 
• Thickness (nm) & composition
• Breakthrough voltage (V)

Conductive Film
• Conductance (μS/cm2)
• Capacitance (nF/cm2)
• Graphene, carbon, or oxide (band gap)

Catalyst Sites
• Composition: metals, oxides, etc.
• Site density (1/cm2)
• Structure:  clusters versus single atoms

Device Metrics
• Overall capacitance (nF/cm2)
• Speed – corner frequency (Hz)

Active Site Metrics
• Charge per active site (e- / site)



Platinum / Graphene Catalytic Condenser
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Carbon Monoxide Temperature Programmed Desorption
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Modulation of the applied 
potential shifts the binding 
energy of carbon monoxide 

on Pt by ~20 kJ/mole



Ion Gel Condensers: Design & Function
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[1] ACS Nano, 2024, 18(1), 983-995.
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Sputtered 
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Increasing Thermal Stability

[CH3COO]- [HSO4]- [TFSI]-
[EMIM]+

Cation Anions
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c

Ion Gels are composites of ionic liquids and polymers
• Mobile ions provide charge stabilization
• Flexible gel is deposited via coating methods
• Ion gel is thermally stable up to 200 °C



Pt/C Ion Gel Condenser:  CO Binding with IR Spectroscopy
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Programs of Programmable Catalysts
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What program should I give to the catalyst?

[1] JACS Au, 2022, DOI: 10.1021/jacsau.2c00114



Catalytic Resonance Theory
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A catalytic reaction occurs on a surface with oscillating binding energy

Tunable quantity is the binding 
energy of surface 
intermediates: A* and B*

Amplitude is variation in 
binding energy

Frequency is the rate at which 
binding energy variation occurs

[1] M.A. Ardagh, et al. ACS Catalysis, 2019, 9(8), 6929.  DOI:  10.1021/acscatal.9b01606



Approach:  Programmable Catalysis
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A catalytic reaction occurs on a surface with defined oscillating binding energy
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• A* reacts to form B*

• B* is lifted from state 1 to 
state 2 & desorbs

• Surface resets to state 1

[1] M.A. Ardagh, et al. ACS Catalysis, 2019, 9(8), 6929.  DOI:  10.1021/acscatal.9b01606



Dynamic Catalysis: Square Wave Simulation
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Binding energy of B flips from high 
to low

Instantaneous reaction rate spikes 
when binding energy flips to weak 

state

Surface flips completely between 
100% coverage of A* and B*

[1] M.A. Ardagh, et al. ACS Catalysis, 2019, 9(8), 6929.  DOI:  10.1021/acscatal.9b01606



Effective Rate:  Catalytic Resonance Frequency
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The resonance frequency exists where the 
applied amplitude matches the change in 

binding energy of the inverted volcano

The resonance frequency exists with a 
maximum in effective rate (pink)



Programmable Catalyst:  Forced Dynamics
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Fast (1000 Hz) and powerful (dH > 0.4 eV) condensers 
provide new opportunities for programmable catalysts

“Program”

37



Writing Catalyst Programs

Program Options

Programmable 
Catalyst

RATE
Selectivity
Selectivity
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Programmable Catalysis: Non-Equilibrium Steady-State
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Under dynamic conditions, reactions proceed to steady state different from equilibrium
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CONDITIONS:  T ~ 300 °C, PTOT ~ 100 bar
α ~ 0.6, β ~ 102 kJ/mol, γ ~ 2.0, δ  ~ 1.4 eV
f ~ 1000 Hz square, ΔU ~ 0.2 eV[1] M.A. Ardagh, et al. Cat. Sci. Tech. 2019, 9, 5058.  DOI: 10.1039/C9CY01543D



The Dynamics Mechanism – Directionality
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Selection of imposed surface oscillation tunes reaction conversion away from equilibrium

Batch reactor conditions:  150 °C, initial reactor composition 
of 100 bar pure A, ΔHrxn ~ 0 kJ mol-1, α ~ 0.6, β ~ 102 kJ 
mol-1, γB-A ~ 0.5, and δ ~ 1.4 eV.

The A-to-B reaction in a batch reactor 
operating to achieve steady state

Green represents equilibrium (XA ~ 50%)

Direction predictable by metric:  λ

[1] M.A. Ardagh, et al. Cat. Sci. Tech. 2019, 9, 5058.  DOI: 10.1039/C9CY01543D
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Programmable Catalytic Ratchet:  Basic Unit of Dynamic Chemistry
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[1] Chem. Sci., 2024,15, 13872-13888



Programmable Catalytic Ratchet:  Basic Unit of Dynamic Chemistry
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Three Characteristics of Catalytic Elementary Ratchets
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(1) Ratchet Directionality (forward vs reverse)

𝜆𝜆 =
𝑘𝑘1,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐷𝐷𝐵𝐵 + 𝑘𝑘1,𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏𝑔𝑔 1−𝐷𝐷𝐵𝐵

𝑘𝑘−1,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐷𝐷𝐵𝐵 + 𝑘𝑘−1,𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏𝑔𝑔 1−𝐷𝐷𝐵𝐵
 

(2) Cutoff Frequency (ON vs OFF)

𝑓𝑓𝑐𝑐  = 𝑘𝑘𝐼𝐼𝐼𝐼𝐷𝐷𝐼𝐼𝐼𝐼
4 2−1

 

(3) Pass Condition (weak vs strong)
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A theory of the catalytic mechanics of reacting molecules 
on active sites that change with time

Accelerate catalytic reactions orders 
of magnitude beyond Sabatier limit[1]
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[1] ACS Catalysis, 2019, 9(8), 6929, [2] Cat. Sci. Tech. 2019, 9, 5058, [3] Chem. Sci., 2020, 11, 3501 

Perfectly control selectivity to 
products in branched reactions[3] 

B(g) ← A(g) → C(g)
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Convergence of Research for Programmable Catalysis

Programmable 
Catalysis

Catalytic Resonance Theory
Fundamentals behaviors of molecules 
on dynamic surfaces 

Programmable Surface Reactions
How do we model and

optimize programmable 
surface reactions?

Programmable Catalyst Synthesis and 
Characterization

How do we make and characterize 
catalysts that can change with time?

The emerging field of programmable catalysis must address four convergent research efforts

Artificial Intelligence
Advanced 

Mathematics

National Laboratory 
X-ray Source

Nanofabrication

Molecular Modeling Computational Chemistry 
with DOE Resources

Advanced Reactor 
Design

Data 
Science

Programmable Catalyst Experiments
How do we evaluate programmable 

catalysts within reactors?



What happens with a network of catalytic ratchets? (Ammonia)
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Different frequencies achieve higher/lower steady state of ammonia synthesis
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[1] Science Advances, 2022, 8(4)

Dynamic strain of ruthenium



Example:  Oxygen Evolution Reaction (OER)

The Oxygen Evolution Reaction (OER) 
is the controlling chemistry of water 
splitting

(c) OER forms a conventional Sabatier 
volcano

Oscillation of the catalytic surface:
• accelerates OER beyond the catalytic 

rate target (above Sabatier)
• dramatically reduces the required 

overpotential

[1] ACS Energy Letters, 2024, 2024, 9, 2013-2023. DOI: 10.1021/acsenergylett.4c00365 

Dr. Sallye 
Gathmann
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Key Step Forward:  Catalyst dynamics is a 
strategy for achieving breakthrough catalytic 
performance

Benefit: Rate enhancement and reaction 
selectivity control for products

Massive targets:  
• Selective Natural Gas Conversion
• Fertilizer Production
• Plastic Precursor Synthesis
• Energy Storage

This technology is just getting started…

Combine:
(i) Chemistry
(ii) Perturbation
(iii) Material

Implement:
(i) Build
(ii) Optimize
(iii) Test
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